Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 790
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396628

RESUMO

CD8+ T cells play a role in the suppression of tumor growth and immunotherapy. Ion channels control the Ca2+-dependent function of CD8+ lymphocytes such as cytokine/granzyme production and tumor killing. Kv1.3 and KCa3.1 K+ channels stabilize the negative membrane potential of T cells to maintain Ca2+ influx through CRAC channels. We assessed the expression of Kv1.3, KCa3.1 and CRAC in CD8+ cells from ovarian cancer (OC) patients (n = 7). We found that the expression level of Kv1.3 was higher in patients with malignant tumors than in control or benign tumor groups while the KCa3.1 activity was lower in the malignant tumor group as compared to the others. We demonstrated that the Ca2+ response in malignant tumor patients is higher compared to control groups. We propose that altered Kv1.3 and KCa3.1 expression in CD8+ cells in OC could be a reporter and may serve as a biomarker in diagnostics and that increased Ca2+ response through CRAC may contribute to the impaired CD8+ function.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Ovarianas , Humanos , Feminino , Linfócitos T CD8-Positivos/metabolismo , Canais de Potássio/metabolismo , Prognóstico , Biomarcadores/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Canal de Potássio Kv1.3/metabolismo
2.
Expert Opin Ther Targets ; 28(1-2): 67-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38316438

RESUMO

INTRODUCTION: Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED: This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION: Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.


Assuntos
Doenças Autoimunes , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Estudos Prospectivos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Transdução de Sinais , Canal de Potássio Kv1.3 , Bloqueadores dos Canais de Potássio/farmacologia
3.
Ann Neurol ; 95(2): 365-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964487

RESUMO

OBJECTIVE: Variants in several potassium channel genes, including KCNA1 and KCNA2, cause Developmental and Epileptic Encephalopathies (DEEs). We investigated whether variants in KCNA3, another mammalian homologue of the Drosophila shaker family and encoding for Kv1.3 subunits, can cause DEE. METHODS: Genetic analysis of study individuals was performed by routine exome or genome sequencing, usually of parent-offspring trios. Phenotyping was performed via a standard clinical questionnaire. Currents from wild-type and/or mutant Kv1.3 subunits were investigated by whole-cell patch-clamp upon their heterologous expression. RESULTS: Fourteen individuals, each carrying a de novo heterozygous missense variant in KCNA3, were identified. Most (12/14; 86%) had DEE with marked speech delay with or without motor delay, intellectual disability, epilepsy, and autism spectrum disorder. Functional analysis of Kv1.3 channels carrying each variant revealed heterogeneous functional changes, ranging from "pure" loss-of-function (LoF) effects due to faster inactivation kinetics, depolarized voltage-dependence of activation, slower activation kinetics, increased current inactivation, reduced or absent currents with or without dominant-negative effects, to "mixed" loss- and gain-of-function (GoF) effects. Compared to controls, Kv1.3 currents in lymphoblasts from 1 of the proband displayed functional changes similar to those observed upon heterologous expression of channels carrying the same variant. The antidepressant drug fluoxetine inhibited with similar potency the currents from wild-type and 1 of the Kv1.3 GoF variant. INTERPRETATION: We describe a novel association of de novo missense variants in KCNA3 with a human DEE, and provide evidence that fluoxetine might represent a potential targeted treatment for individuals carrying variants with significant GoF effects. ANN NEUROL 2024;95:365-376.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Animais , Humanos , Fluoxetina , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/complicações , Mutação de Sentido Incorreto/genética , Mamíferos , Canal de Potássio Kv1.3/genética
4.
Biomed Pharmacother ; 168: 115635, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37816303

RESUMO

Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Canal de Potássio Kv1.3/genética , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Mutação
5.
Arch Biochem Biophys ; 746: 109719, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591369

RESUMO

Kv1.3 channel has been shown to participate in regulating inflammatory activation, proliferation and apoptosis in several cell types. However, most of those existing studies focused on the ion-conducting properties of Kv1.3 in maintaining the resting potential and regulating Ca2+ influx. The aim of our study was to explore whether the Kv1.3-JAK2/STAT3 signaling pathway was involved in oxidized low density lipoprotein (ox-LDL) induced vascular smooth muscle cell (VSMC) proliferation. VSMCs from mouse aorta were cultured and treated with ox-LDL (25 µg/mL). The cell counting kit-8 was used to assess cell proliferation, and western blotting was performed to detect expression levels of Kv1.3, JAK2/STAT3, phosphorylated JAK2/STAT3, cyclin B1 and cyclin D1 in treated VSMCs. VSMCs were transfected with Kv1.3 small interfering RNA (Kv1.3-siRNA) or infected with a Kv1.3 lentiviral expression vector (Lv-Kv1.3) and treated with a JAK2 inhibitor LY2784544 to assess the role of Kv1.3 and JAK2/STAT3 signaling in mediating VSMC proliferation induced by ox-LDL. Ox-LDL induced cell proliferation and upregulated the expression of Kv1.3 in mouse VSMCs. In VSMCs transfected with Kv1.3-siRNA, ox-LDL was not efficient in inducing cell proliferation or the levels of proliferation associated proteins, cyclin B1 and cyclin D1. However, cell proliferation, cyclin B1 and cyclin D1 levels increased in VSMCs infected with Lv-Kv1.3. Levels of phosphorylated JAK2 and STAT3 were increased in ox-LDL-treated VSMCs, and this increase was prevented in VSMCs transfected with Kv1.3-siRNA. Treatment with the JAK2 inhibitor LY2784544 also prevented the increase in VSMCs proliferation treated with ox-LDL. Our findings demonstrated that Kv1.3 promoted proliferation of VSMCs treated with ox-LDL, and that this effect might be mediated through activation of the JAK2/STAT3 signaling pathway.


Assuntos
Ciclina D1 , Músculo Liso Vascular , Animais , Camundongos , Proliferação de Células , Ciclina B1 , RNA Interferente Pequeno , Transdução de Sinais , Canal de Potássio Kv1.3
6.
J Chem Inf Model ; 63(10): 3043-3053, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37143234

RESUMO

Peptide toxins that adopt the ShK fold can inhibit the voltage-gated potassium channel KV1.3 with IC50 values in the pM range and are therefore potential leads for drugs targeting autoimmune and neuroinflammatory diseases. Nuclear magnetic resonance (NMR) relaxation measurements and pressure-dependent NMR have shown that, despite being cross-linked by disulfide bonds, ShK itself is flexible in solution. This flexibility affects the local structure around the pharmacophore for the KV1.3 channel blockade and, in particular, the relative orientation of the key Lys and Tyr side chains (Lys22 and Tyr23 in ShK) and has implications for the design of KV1.3 inhibitors. In this study, we have performed molecular dynamics (MD) simulations on ShK and a close homologue, HmK, to probe the conformational space occupied by the Lys and Tyr residues, and docked the different conformations with a recently determined cryo-EM structure of the KV1.3 channel. Although ShK and HmK have 60% sequence identity, their dynamic behaviors are quite different, with ShK sampling a broad range of conformations over the course of a 5 µs MD simulation, while HmK is relatively rigid. We also investigated the importance of conformational dynamics, in particular the distance between the side chains of the key dyad Lys22 and Tyr23, for binding to KV1.3. Although these peptides have quite different dynamics, the dyad in both adopts a similar configuration upon binding, revealing a conformational selection upon binding to KV1.3 in the case of ShK. Both peptides bind to KV1.3 with Lys22 occupying the pore of the channel. Intriguingly, the more flexible peptide, ShK, binds with significantly higher affinity than HmK.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Animais , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/metabolismo , Venenos de Cnidários/química , Venenos de Cnidários/metabolismo , Venenos de Cnidários/farmacologia , Anêmonas-do-Mar/química , Anêmonas-do-Mar/metabolismo , Peptídeos/química , Conformação Molecular , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canal de Potássio Kv1.2/metabolismo
7.
Toxins (Basel) ; 15(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36977120

RESUMO

The growing interest in potassium channels as pharmacological targets has stimulated the development of their fluorescent ligands (including genetically encoded peptide toxins fused with fluorescent proteins) for analytical and imaging applications. We report on the properties of agitoxin 2 C-terminally fused with enhanced GFP (AgTx2-GFP) as one of the most active genetically encoded fluorescent ligands of potassium voltage-gated Kv1.x (x = 1, 3, 6) channels. AgTx2-GFP possesses subnanomolar affinities for hybrid KcsA-Kv1.x (x = 3, 6) channels and a low nanomolar affinity to KcsA-Kv1.1 with moderate dependence on pH in the 7.0-8.0 range. Electrophysiological studies on oocytes showed a pore-blocking activity of AgTx2-GFP at low nanomolar concentrations for Kv1.x (x = 1, 3, 6) channels and at micromolar concentrations for Kv1.2. AgTx2-GFP bound to Kv1.3 at the membranes of mammalian cells with a dissociation constant of 3.4 ± 0.8 nM, providing fluorescent imaging of the channel membranous distribution, and this binding depended weakly on the channel state (open or closed). AgTx2-GFP can be used in combination with hybrid KcsA-Kv1.x (x = 1, 3, 6) channels on the membranes of E. coli spheroplasts or with Kv1.3 channels on the membranes of mammalian cells for the search and study of nonlabeled peptide pore blockers, including measurement of their affinity.


Assuntos
Escherichia coli , Peptídeos , Animais , Sequência de Aminoácidos , Ligação Proteica/fisiologia , Escherichia coli/metabolismo , Ligantes , Peptídeos/farmacologia , Peptídeos/metabolismo , Bloqueadores dos Canais de Potássio/química , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Mamíferos/metabolismo
8.
J Cell Physiol ; 238(5): 976-991, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852591

RESUMO

Voltage-dependent potassium channel Kv1.3 plays a key role on T-cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T-cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR-Cas9 technique was used to insert a Flag-Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T-cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3-/- mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3-like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (VM ), decreased Ca2+ influx, and a reduction in the [Ca2+ ]i increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.


Assuntos
Canal de Potássio Kv1.3 , Animais , Humanos , Camundongos , Linhagem Celular , Membrana Celular/metabolismo , Células Jurkat , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(2): e2211977120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595694

RESUMO

Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.


Assuntos
Artrite Reumatoide , Probióticos , Ratos , Humanos , Animais , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Peptídeos/metabolismo , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Probióticos/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico
10.
Eur J Pain ; 27(2): 289-302, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36440534

RESUMO

BACKGROUD: Studies have shown that the activation of microglia is the main mechanism of neuropathic pain. Kv1.3 channel is a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of microglial cells. As such, it may be involved in the processes of neuropathic pain, however, whether Kv1.3 plays a role in neuroinflammation following peripheral nerve injury is unclear. METHOD: The spared nerve injury model (SNI) was used to establish neuropathic pain. Western blot and immunofluorescence were used to examine the effect of Kv1.3 in the SNI rats. PAP-1, a Kv1.3 specific blocker was administered to alleviate neuropathic pain in the SNI rats. RESULTS: Neuropathic pain and allodynia occurred after SNI, the levels of M1 (CD68, iNos) and M2 (CD206, Arg-1) phenotypes were up-regulated in the spinal cord, and the protein levels of NLRP3, caspase-1 and IL-1ß were also increased. Pharmacological blocking of Kv1.3 with PAP-1 alleviated hyperpathia induced by SNI. Meanwhile, intrathecal injection of PAP-1 reduced M1 polarization and decreased NLRP3, caspase-1 and IL-1ß expressions of protein levels. CONCLUSION: Our research indicates that the Kv1.3 channel in the spinal cord contributes to neuropathic pain by promoting microglial M1 polarization and activating the NLRP3 inflammasome.


Assuntos
Hiperalgesia , Canal de Potássio Kv1.3 , Microglia , Neuralgia , Medula Espinal , Animais , Ratos , Caspases/metabolismo , Hiperalgesia/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Neuralgia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Canal de Potássio Kv1.3/metabolismo
11.
J Integr Neurosci ; 22(6): 171, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176920

RESUMO

BACKGROUND: White matter injury (WMI) in basal ganglia usually induces long-term disability post intracerebral hemorrhage (ICH). Kv1.3 is an ion channel expressed in microglia and induces neuroinflammation after ICH. Here, we investigated the functions and roles of Kv1.3 activation-induced inflammatory response in WMI and the Kv1.3 blockade effect on microglia polarization after ICH. METHODS: Mice ICH model was constructed by autologous blood injection. The expression of Kv1.3 was measured using immunoblot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunostaining assays. Then, the effect of administration of 5-(4-Phenoxybutoxy) psoralen (PAP-1), a selectively pharmacological Kv1.3 blocker, was investigated using open field test (OFT) and basso mouse score (BMS). RT-qPCR, immunoblot, and enzyme-linked immunosorbent assay (ELISA) were taken to elucidate the expression of pro-inflammatory or anti-inflammatory factors around hematoma. PAP-1's function in regulating microglia polarization was investigated using immunoblot, RT-qPCR, and immunostaining assays. The downstream PAP-1 signaling pathway was determined by RT-qPCR and immunoblot. RESULTS: Kv1.3 expression was increased in microglia around the hematoma significantly after ICH. PAP-1 markedly improved neurological outcomes and the WMI by reducing pro-inflammatory cytokine accumulation and upregulating anti-inflammatory factors. Mechanistically, PAP-1 reduces NF-κB p65 and p50 activation, thus facilitating microglia polarization into M2-like microglia, which exerts this beneficial effect. CONCLUSIONS: PAP-1 reduced pro-inflammatory cytokines accumulation and increased anti-inflammatory factors by facilitating M2-like microglia polarization via the NF-κB signaling pathway. Thus, the current study shows that the Kv1.3 blockade is capable of ameliorating WMI by facilitating M2-like phenotype microglia polarization after ICH.


Assuntos
Lesões Encefálicas , Canal de Potássio Kv1.3 , Substância Branca , Animais , Camundongos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Hematoma , NF-kappa B/metabolismo , Fenótipo , Transdução de Sinais/fisiologia , Canal de Potássio Kv1.3/antagonistas & inibidores
12.
Toxins (Basel) ; 14(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36548755

RESUMO

The voltage-gated potassium Kv1.3 channel is an essential component of vital cellular processes which is also involved in the pathogenesis of some autoimmune, neuroinflammatory and oncological diseases. Pore blockers of the Kv1.3 channel are considered as potential drugs and are used to study Kv1 channels' structure and functions. Screening and study of the blockers require the assessment of their ability to bind the channel. Expanding the variety of methods used for this, we report on the development of the fluorescent competitive binding assay for measuring affinities of pore blockers to Kv1.3 at the membrane of mammalian cells. The assay constituents are hongotoxin 1 conjugated with Atto488, fluorescent mKate2-tagged Kv1.3 channel, which was designed to improve membrane expression of the channel in mammalian cells, confocal microscopy, and a special protocol of image processing. The assay is implemented in the "mix and measure", format and allows the screening of Kv1.3 blockers, such as peptide toxins, that bind to the extracellular vestibule of the K+-conducting pore, and analyzing their affinity.


Assuntos
Células Eucarióticas , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canal de Potássio Kv1.3/química , Mamíferos
13.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499018

RESUMO

Epilepsy is a chronic neurological disorder whose pathophysiology relates to inflammation. The potassium channel Kv1.3 in microglia has been reported as a promising therapeutic target in neurological diseases in which neuroinflammation is involved, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and middle cerebral artery occlusion/reperfusion (MCAO/R). Currently, little is known about the relationship between Kv1.3 and epilepsy. In this study, we found that Kv1.3 was upregulated in microglia in the KA-induced mouse epilepsy model. Importantly, blocking Kv1.3 with its specific small-molecule blocker 5-(4-phenoxybutoxy)psoralen (PAP-1) reduced seizure severity, prolonged seizure latency, and decreased neuronal loss. Mechanistically, we further confirmed that blockade of Kv1.3 suppressed proinflammatory microglial activation and reduced proinflammatory cytokine production by inhibiting the Ca2+/NF-κB signaling pathway. These results shed light on the critical function of microglial Kv1.3 in epilepsy and provided a potential therapeutic target.


Assuntos
Epilepsia , Canal de Potássio Kv1.3 , Animais , Camundongos , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Microglia/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo
14.
Bioconjug Chem ; 33(11): 2197-2212, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36330854

RESUMO

Upregulation of the voltage-gated potassium channel KV1.3 is implicated in a range of autoimmune and neuroinflammatory diseases, including rheumatoid arthritis, psoriasis, multiple sclerosis, and type I diabetes. Understanding the expression, localization, and trafficking of KV1.3 in normal and disease states is key to developing targeted immunomodulatory therapies. HsTX1[R14A], an analogue of a 34-residue peptide toxin from the scorpion Heterometrus spinifer, binds KV1.3 with high affinity (IC50 of 45 pM) and selectivity (2000-fold for KV1.3 over KV1.1). We have synthesized a fluorescent analogue of HsTX1[R14A] by N-terminal conjugation of a Cy5 tag. Electrophysiology assays show that Cy5-HsTX1[R14A] retains activity against KV1.3 (IC50 ∼ 0.9 nM) and selectivity over a range of other potassium channels (KV1.2, KV1.4, KV1.5, KV1.6, KCa1.1 and KCa3.1), as well as selectivity against heteromeric channels assembled from KV1.3/KV1.5 tandem dimers. Live imaging of CHO cells expressing green fluorescent protein-tagged KV1.3 shows co-localization of Cy5-HsTX1[R14A] and KV1.3 fluorescence signals at the cell membrane. Moreover, flow cytometry demonstrated that Cy5-HsTX1[R14A] can detect KV1.3-expressing CHO cells. Stimulation of mouse microglia by lipopolysaccharide, which enhances membrane expression of KV1.3, was associated with increased staining by Cy5-HsTX1[R14A], demonstrating that it can be used to identify KV1.3 in disease-relevant models of inflammation. Furthermore, the biodistribution of Cy5-HsTX1[R14A] could be monitored using ex vivo fluorescence imaging of organs in mice dosed subcutaneously with the peptide. These results illustrate the utility of Cy5-HsTX1[R14A] as a tool for visualizing KV1.3, with broad applicability in fundamental investigations of KV1.3 biology, and the validation of novel disease indications where KV1.3 inhibition may be of therapeutic value.


Assuntos
Canal de Potássio Kv1.3 , Venenos de Escorpião , Camundongos , Animais , Cricetinae , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/metabolismo , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Cricetulus , Distribuição Tecidual , Peptídeos/química
15.
Arch Biochem Biophys ; 730: 109394, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100082

RESUMO

Macrophage inflammatory response is crucial for the initiation and progression of atherosclerosis. The voltage-gated potassium channel Kv1.3 plays an important role in the modulation of macrophage function. The aim of this study was to investigate the effect and possible mechanism of Kv1.3 on inflammation in oxidized low-density lipoprotein (ox-LDL)-induced RAW264.7 macrophages. Treatment with Kv1.3-siRNA attenuated the expression of IL-6 and TNF-α and reduced the phosphorylation of ERK1/2 and NF-κB in ox-LDL-induced macrophages. In contrast, overexpression of Kv1.3 with Lv-Kv1.3 promoted the expression of IL-6 and TNF-α, and increased ERK1/2 and NF-κB phosphorylation in macrophages. PD-98059, a specific inhibitor of ERK, reversed the expression of IL-6 and TNF-α in ox-LDL-treated macrophages. Kv1.3-siRNA did not inhibit inflammation any further when cells were treated with PD-98059. This suggests that ERK acts as a downstream regulator of the Kv1.3 channel. In conclusion, Kv1.3 may be an indispensable membrane protein in ox-LDL-induced RAW264.7 macrophage inflammation in atherosclerosis through the ERK/NF-κB pathway.


Assuntos
Aterosclerose , Canal de Potássio Kv1.3 , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Canal de Potássio Kv1.3/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
16.
J Biol Chem ; 298(11): 102467, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087839

RESUMO

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Sequência de Aminoácidos , Bloqueadores dos Canais de Potássio/química , Peptídeos/química , Ligantes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.5/metabolismo
17.
Eur J Pharmacol ; 933: 175242, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058290

RESUMO

Microglia-mediated neuroinflammation plays a vital role in the pathogenesis of ischemic stroke, which serves as a prime target for developing novel therapeutic agent. However, feasible and effective agents for controlling neuroinflammation are scarce. Bergapten were acknowledged to hold therapeutic potential in restricting inflammation in multiple diseases, including peripheral neuropathy, migraine headaches and osteoarthritis. Here, we aimed to investigate the impact of bergapten on microglia-mediated neuroinflammation and its therapeutic potential in ischemic stroke. Our study demonstrated that bergapten significantly reduced the expression of pro-inflammatory cytokines and the activation of NF-κB signaling pathway in LPS-stimulated primary microglia. Mechanistically, bergapten suppressed cellular potassium ion efflux by inhibiting Kv1.3 channel and inhibits the degradation of Carbonyl reductase 1 induced by LPS, which might contribute to the anti-inflammatory effect of bergapten. Furthermore, bergapten suppressed microglial activation and post-stroke neuroinflammation in an experimental stroke model, leading to reduced infarct size and improved functional recovery. Thus, our study identified that bergapten might be a potential therapeutic compound for the treatment of ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Canal de Potássio Kv1.3/metabolismo , 5-Metoxipsoraleno/farmacologia , Anti-Inflamatórios/farmacologia , Lesões Encefálicas/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Citocinas/metabolismo , Humanos , AVC Isquêmico/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Microglia , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Potássio/metabolismo
18.
J Gen Physiol ; 154(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816151

RESUMO

JGP study identifies a novel peptide in scorpion venom that inhibits KV1.2 and KV1.3 channels and could form the basis for new treatments for autoimmune diseases.


Assuntos
Venenos de Escorpião , Animais , Canal de Potássio Kv1.3 , Peptídeos , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/farmacologia , Escorpiões , Linfócitos T
19.
Nat Commun ; 13(1): 3854, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788586

RESUMO

The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.


Assuntos
Canal de Potássio Kv1.3/química , Linfócitos T , Humanos , Imunoglobulinas/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Lisina , Linfócitos T/química
20.
Mol Pharmacol ; 102(3): 150-160, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764383

RESUMO

Voltage-gated KV1.3 channel has been reported to be a drug target for the treatment of autoimmune diseases, and specific inhibitors of Kv1.3 are potential therapeutic drugs for multiple diseases. The scorpions could produce various bioactive peptides that could inhibit KV1.3 channel. Here, we identified a new scorpion toxin polypeptide gene ImKTX58 from the venom gland cDNA library of the Chinese scorpion Isometrus maculatus Sequence alignment revealed high similarities between ImKTX58 mature peptide and previously reported KV1.3 channel blockers-LmKTX10 and ImKTX88-suggesting that ImKTX58 peptide might also be a KV1.3 channel blocker. By using electrophysiological recordings, we showed that recombinant ImKTX58 prepared by genetic engineering technologies had a highly selective inhibiting effect on KV1.3 channel. Further alanine scanning mutagenesis and computer simulation identified four amino acid residues in ImKTX58 peptide as key binding sites to KV1.3 channel by forming hydrogen bonds, salt bonds, and hydrophobic interactions. Among these four residues, 28th lysine of the ImKTX58 mature peptide was found to be the most critical amino acid residue for blocking KV1.3 channel. SIGNIFICANCE STATEMENT: In this study, we discovered a scorpion toxin gene ImKTX58 that has not been reported before in Hainan Isometrus maculatus and successfully used the prokaryotic expression system to express and purify the polypeptides encoded by this gene. Electrophysiological experiments on ImKTX58 showed that ImKTX58 has a highly selective blocking effect on KV1.3 channel over Kv1.1, Kv1.2, Kv1.5, SK2, SK3, and BK channels. These findings provide a theoretical basis for designing highly effective KV1.3 blockers to treat autoimmune and other diseases.


Assuntos
Venenos de Escorpião , Sequência de Aminoácidos , Aminoácidos , Animais , Simulação por Computador , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Peptídeos/química , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/química , Venenos de Escorpião/metabolismo , Venenos de Escorpião/farmacologia , Escorpiões/química , Escorpiões/genética , Escorpiões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...